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Fictitious domain methods for the numerical solution of two-dimensional scat-
tering problems are considered. The original exterior boundary value problem is
approximated by truncating the unbounded domain and by imposing a nonreflecting
boundary condition on the artificial boundary. First-order, second-order, and exact
nonreflecting boundary conditions are tested on rectangular and circular boundaries.
The finite element discretizations of the corresponding approximate boundary value
problems are performed using locally fitted meshes, and the discrete equations are
solved with fictitious domain methods. A special finite element method using non-
matching meshes is considered. This method uses the macro-hybrid formulation
based on domain decomposition to couple polar and cartesian coordinate systems.
A special preconditioner based on fictitious domains is introduced for the arising al-
gebraic saddle-point system such that the subspace of constraints becomes invariant
with respect to the preconditioned iterative procedure. The performance of the new
method is compared to the fictitious domain methods both with respect to accuracy
and computational cost. c© 1998 Academic Press

Key Words:acousticscattering;nonreflectingboundaryconditions;fictitiousdoma-
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1. INTRODUCTION

In this article, we consider the two-dimensional exterior Helmholtz equation,

1u+ ω2u = 0 inR2\Ǟ, (1.1a)

1 This research was partially supported by Academy of Finland Grant 34063.
2 Corresponding author. E-mail: emsh@math.jyu.fi.

89

0021-9991/98 $25.00
Copyright c© 1998 by Academic Press

All rights of reproduction in any form reserved.



              

90 HEIKKOLA ET AL.

u = −vI on ∂Ä, (1.1b)

lim
r→∞
√

r

(
∂u

∂r
− iωu

)
= 0, (1.1c)

which can be used to model the scattering of time-harmonic electromagnetic or acoustic
waves by an obstacle denoted byÄ. Here,vI (x)= eiω·x is the time-harmonic incident plane
wave the direction of propagation of which is given by the vectorω. The well-posedness
of the boundary value problem (1.1) is considered, for example, in [1].

Numerical solution of scattering problems has aroused active research interest, because
efficient methods would facilitate the simulation of many important physical phenomena in
underwater acoustics, medicine, and radar technology, for example. In electromagnetic wave
simulations, the frequency of the wave motion is usually high, which creates problems in the
efficient and accurate solution of the associated equations. When the frequency is increased,
either the computational cost or the memory consumption become the bottlenecks, and it
is necessary to develop special techniques to reduce these factors.

The standard approaches for the numerical solution of scattering problems are the finite
element method with unstructured meshes and the boundary element method. The finite el-
ement method leads to a sparse and conveniently structured system of linear equations to be
solved, but to obtain reasonable accuracy it is necessary to have a very dense discretization
mesh inside the computational domain. Thus, the arising linear system involves a large num-
ber of equations the solution of which requires extensive computer capacity. The boundary
element methods, on the other hand, result in fewer equations to be solved, because only
the boundary of the obstacle needs to be discretized. However, the coefficient matrix of the
linear system of equations is dense and does not, in general possess any special structure.
Iterative solution requires matrix–vector multiplications with this dense coefficient matrix
on each iteration step, and the computational cost of this operation isO(n2), wheren is the
number of nodes on the boundary. Therefore, also in this case the memory and CPU time
consumptions become large. The cost of the multiplication can be significantly reduced by
using the fast multipole method, which provides an efficient way to compute (with given
accuracy) the matrix–vector multiplication [2]. The boundary element methods, together
with the fast multipole method comprise a very efficient and attractive approach to solve
scattering problems.

Fictitious domain methods with separable preconditioners are efficient solution algo-
rithms for elliptic mesh equations arising from finite element (or finite difference) dis-
cretization (see, e.g., [3, 4]), and they have been applied succesfully also to the exterior
Helmholtz problem [5, 8, 9, 12]. In this paper, we concentrate on this methodology and
consider its efficient application to the numerical solution of the two-dimensional Helmholtz
equation in (1.1). The algebraic fictitious domain methods are closely related to, and
often coincide with, the capacitance matrix methods the application of which to scattering
problems is considered in [13].

We consider also the macro-hybrid formulation-based domain decomposition for the
boundary value problem in (1.1), which was first considered by Goldstein in [15]. This
formulation is used to couple polar and cartesian coordinate systems by partitioning the
computational domain into two parts and by constructing polar and cartesian meshes in
the two subdomains. These meshes become nonmatching on the subdomain interface, and
the solutions in the two subregions are glued together by a weak continuity condition. Dis-
cretization leads to a saddle-point linear system, which is preconditioned with a special
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matrix based on fictitious domains. It turns out that the subspace of constraints becomes
invariant with respect to the corresponding preconditioned iterative procedure.

The rest of the paper is organized as follows: In Section 2, we consider different nonre-
flecting boundary conditions and the corresponding approximate boundary value problems.
Furthermore, we give some motivations for the numerical tests presented in this article.
In Section 3, we describe the fictitious domain method and its implementation, while the
coupling of the two coordinate systems is considered in Section 4. In Section 5, we describe
the computation of the radar cross sections of the numerical solutions, and in Section 6,
we present the test examples we have used to compare the different methods. Section 7 is
devoted to the results of several numerical experiments the purpose of which is to study the
accuracy of the different nonreflecting boundary conditions and to compare the accuracy
and efficiency of the new finite element method using nonmatching meshes to the fictitious
domain methods working with matching meshes.

2. APPROXIMATE BOUNDARY VALUE PROBLEMS

We approximate the original problem (1.1) by truncating the unbounded domain with
an artificial boundary, denoted by0∞, and by introducing an intermediate boundary value
problem in the arising bounded domain. The shape of the artificial boundary depends on
the underlying coordinate system such that in polar coordinates it is a circle of radiusR,
while in cartesian coordinates it is a rectangle of widthD (see Fig. 1). The aim is to choose
the boundary condition on0∞ such that the solution of the intermediate problem gives a
good approximation to the solution of the original exterior problem within the computational
domain5\Ǟ. For a review on different nonreflecting boundary conditions for the Helmholtz
equation see [16, 17]. The error caused by the truncation of the domain has been analyzed,
for example, in [14, 18, 20, 21].

In general, the approximate boundary value problem is of the form

1u+ ω2u = 0 in5\Ǟ, (2.1a)

u = −vI on ∂Ä, (2.1b)

Mu = 0 on0∞, (2.1c)

where the operatorM corresponds to the chosen boundary condition. On a circular bound-
ary, we use the first-order and second-order nonreflecting boundary conditions introduced

FIG. 1. The rectangular and circular artificial boundaries.
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by Engquist and Majda [19]. The operatorsM corresponding to these two conditions are
given by

M ≡ ∂

∂r
−
(

iω − 1

2R

)
(2.2)

and

M ≡ ∂

∂r
−
(

iω − 1

2R

)
−
(

i
2ωR2

+ 1

2ω2R3

)
∂2

∂θ2
, (2.3)

respectively. On a rectangular boundary, the standard first-order nonreflecting boundary
condition is given by

Mu ≡ ∂u

∂n
− iωu = 0. (2.4)

We use also the second-order boundary condition, which contains additional conditions on
the corners of the boundary [22]:

∂u

∂n
− iωu− i

2ω

∂2u

∂s2
= 0 on0∞,

(2.5)

± ∂u

∂x1
± ∂u

∂x2
= i

3

2
ωu onC.

Here,C denotes the set of corner points of the rectangular boundary ands is the unit vector,
which is tangential to the rectangle boundary. The signs in the corner condition are chosen
such that the derivatives are directed outward.

The exact nonreflecting boundary condition on a circular boundary is given by

∂u

∂r
= Mu ≡ ω

π
·
∞∑

n=0

′ H (1)′
n (ωR)

H (1)
n (ωR)

∫ 2π

0
cos(n(θ − θ ′))u(R, θ ′) dθ ′, (2.6)

whereM denotes the Dirichlet-to-Neumann (DtN) mapping, which relates the Dirichlet
and Neumann data of this particular problem [23, 24]. The summation symbol with a prime
means that the first term in the sum is divided by two. In numerical computations, we are
able to use only a finite number of terms in (2.6), which leads to an approximate DtN
operatorM K . In [25], a lower bound forK is derived to guarantee the unique solvability
of the new problem. Our algorithm allows us to take a large number of terms without
significantly affecting the computational cost, because the computation of the necessary
matrix components is a preprocessing stage requiring onlyO(K ) operations (see Section 3).

The main difference between the boundary value problems in rectangular and circular
domains is the direction of the first-order derivative in the nonreflecting boundary conditions.
This direction is normal to the boundary0∞, which, in the case of a circular boundary, is
the radial direction. It has been shown that with the nonreflecting boundary conditions (2.2)
and (2.3), it is possible to reach any accuracy by increasing the radiusR of the artificial
boundary and the discretization accuracy [14, 18].

We introduce the function spacesV f andVs by

V f ≡ H1(5\Ä), Vs ≡ {v ∈ V f : v|0∞ ∈ H1(0∞)
}

(2.7)
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and the spacesV f,0 andVs,0 by

V f,0 ≡ {v ∈ V f : v|∂Ä = 0
}
, Vs,0 ≡ {v ∈ Vs : v|∂Ä = 0

}
. (2.8)

Let the functionĝ∈V f be such that trace|∂Äĝ=−vI ∈ H1/2(∂Ä) and that supp̂g ⊂ 5\Ä.
Then, the weak formulation of the boundary value problem (2.1) is: Findu∈V such that
u− ĝ∈V0 and

a(u, v) = 0 ∀v ∈ V0, (2.9)

wherea(·, ·) is the bilinear form associated with the boundary value problem. In the case
with the first-order or exact boundary conditions, the spacesV andV0 are given byV f

andV f,0. The second-order conditions (2.3) and (2.5) require additional regularity on the
boundary0∞, which is provided by the spacesVs andVs,0.

The bilinear formsa(·, ·) corresponding to the first-order, second-order, and exact bound-
ary conditions (2.2), (2.3), and (2.6), respectively, are given by

af (u, v) =
∫
5\Ä

(
r
∂u

∂r

∂v̄

∂r
+ 1

r

∂u

∂θ

∂v̄

∂θ
− ω2ruv̄

)
dx−

(
iω − 1

2R

)∫
0∞

uv̄ ds, (2.10)

as(u, v) = af (u, v)+
(

i
2ωR2

+ 1

2ω2R3

)∫
0∞

∂u

∂θ

∂v̄

∂θ
dθ, (2.11)

and

ae(u, v) =
∫
5\Ä

(
r
∂u

∂r

∂v̄

∂r
+ 1

r

∂u

∂θ

∂v̄

∂θ
− ω2ruv̄

)
dx−

∫
0∞

M K uv̄ ds, (2.12)

respectively.
In the case of a rectangular boundary, the bilinear forms corresponding to the first-order

and second-order boundary conditions (2.4) and (2.5), respectively, are given by

af (u, v) =
∫
5\Ä

(∇u · ∇v̄ − ω2uv̄) dx− iω
∫
0∞

uv̄ ds (2.13)

and

as(u, v) = af (u, v)+ i
2ω

∫
0∞

∂u

∂s
∂v̄

∂s
ds+ 3

4

∑
x∈C

u(x)v̄(x), (2.14)

respectively.
The finite element discretization of the problem (2.9) is based on a locally fitted mesh,

which is obtained from an orthogonal cartesian or polar mesh, denoted by5h, inside the
domain5. The nodes of the mesh, which are next to the boundary of obstacleÄ are
shifted onto the boundary curve∂Ä, and the modified elements are triangulated such that
the resulting mesh gives a second-order approximation to the shape of the obstacle. This
leads to the locally fitted mesh, which is topologically equivalent to the original mesh and
differs from it only in anh–neighbourhood of the obstacle boundary (see, e.g., [6]). The
restriction of the locally fitted mesh into the domain5\Ǟ is denoted byÄh and the mesh
on the boundary∂Ä by σh. The generation of a locally fitted mesh is illustrated in Fig. 2.
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FIG. 2. An initial grid 5h, the locally fitted mesh, and the meshÄh.

It is well known that the accuracy of the finite element discretization of the Helmholtz
equation deteriorates with increasing wave numberω [26]. The finite element solution
satisfies a quasioptimal error estimate only under the assumptionω2h=O(1), whereh is
the mesh parameter. Under the assumptionωh=O(1), the finite element approximation
involves, in addition to the error of the best approximation, a pollution term, whose mag-
nitude isO(ω3h2). This term becomes significant for large wave numbersω, which limits
the applicability of finite element methods in high-frequency problems.

Based on the element partitioning of the domain5\Ǟ, we introduce the standard piece-
wise linear finite element spacesVh andV0

h corresponding to the spacesV andV0 in (2.9).
The finite element problem is then: Finduh ∈Vh, uh= gh on ∂Äh, such that

a(uh, vh) = 0 ∀vh ∈ V0
h . (2.15)

Here, the functiongh ∈Vh is the piecewise linear interpolate of the function−vI . Problem
(2.15) can be represented as a linear system of equations

A1u1 = f, (2.16)

whereA1 is a complex symmetric matrix. We remark that mass lumping is applied in the
computation of the matrix elements.

3. ALGEBRAIC FICTITIOUS DOMAIN METHODS

3.1. Enlargement of the Original System

The basic idea of the algebraic fictitious domain methodology is to replace the origi-
nal linear system of algebraic equations (2.16) by an equivalent, but enlarged, system of
equations

Âû = f̂ ≡
(

f
0

)
, Â ∈ CN×N, N > n. (3.1)

These two systems are required to be equivalent in the sense that the solution vectoru
should be obtained as the first block of the vectorû [3]. The benefit of this approach is that
there are wider possibilities to construct efficient preconditioners for the enlarged system
(3.1) than for the original one.
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In this paper, we consider enlargements of the form

Â ≡
(

A1 A12

0 A2

)
, (3.2)

where kerA2 ⊆ ker A12, and thereby the first block of the solutionû to the system (3.1)
solves the original system (2.16). The enlarged matrixÂ may be chosen to be singular in
which case the iterative solution is implemented with respect to an appropriate subspace
(see Section 3.2). In fact, in the numerical experiments, we use the enlargement given by
A12= 0 andA2= 0, which is called the zero-enlargement.

The preconditioner, denoted byB, is introduced for the enlarged system and can be
written in the block form

B ≡
(

B1 B12

B21 B2

)
. (3.3)

The enlargement of the original system and the construction of the preconditionerB are
usually based on embedding the original bounded domain into a larger domain5, which has
a simple shape (e.g., rectangle or circle). Then, the matrixB corresponds to the Helmholtz
operator in the domain5.

3.2. Iterative Methods in Subspaces

The algebraic fictitious domain methods can often be realized in a subspace, whose
dimension is lower by an order of magnitude compared to the dimension of the original
system. This fact is significant in view of memory consumption and can be utilized to
improve the computational efficiency. Matrix iterative methods in subspaces are considered
in a general setting, for example, in [7].

Here, we apply preconditioned iterative methods of the form

B(up − up−1) = −
p−1∑
i=0

τp,i (Âu i − f̂ ), p > 0. (3.4)

The initial approximationu0 is introduced by the equation

B(u0− w) = −(Âw − f̂ ), (3.5)

wherew is an arbitrary vector. Then, the initial residual vectorr0,

r0 ≡ Âu0− f̂ = (I − ÂB−1)(Âw − f̂ ), (3.6)

belongs to the subspace

UA ≡ im[(I − ÂB−1)Â] = im Â ∩ im(B− A), (3.7)

and it is easy to see that the subspaceUA is invariant with respect to the method (3.4), that
is, r p ∈UA for all p≥ 0.

If most of the rows of the matriceŝA andB coincide, the subspaceUA obviously has a low
dimension and, consequently, the residual vectorsr p have only a few nonzero components.
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In this case, we are able to realize the iterative process (3.4) in a low dimensional subspace of
RN . This fact motivates the use of locally fitted meshes in the finite element discretization,
because we are then able to introduce a separable preconditionerB such that most of the
rows of the matrixC≡ Â − B are equal to zero. In the two-dimensional case considered
in this paper, the vectors in the corresponding spaceUA have typicallyO(

√
N) nonzero

elements.
Furthermore, the sparse structure of the vectors provides the possibility to apply the partial

solution method, which is a special implementation of the standard method of separation
of variables, to the linear systems with the separable preconditioner [27, 10]. Standard fast
direct methods for such linear systems requireO(N log N) arithmetical operations, but the
partial solution method reduces the cost toO(N) operations.

3.3. Construction of the Preconditioner

Here, we introduce the separable fictitious domain preconditioner, denoted byB, which
corresponds to the Helmholtz equation with a nonreflecting boundary condition in the
rectangular or circular domain5:

1u(x)+ ω2u(x) = 0, x ∈ 5, (3.8a)

Mu(x) = 0, x ∈ 0∞. (3.8b)

The preconditionerB is obtained by finite element discretization of the problem (3.8)
using the original orthogonal mesh5h. Discretization using piecewise linear finite elements
with mass lumping leads to a separable matrix; that is, it can be represented in the tensor
product form

B = M2⊗ A1+ A2⊗M1− ω2M2⊗ M̂1−
(
D⊗ en1

n1
en1T

n1

)
(3.9)

with the tridiagonal matricesA i ∈Cni and diagonal matricesM i ∈Cni and M̂1∈Cni ,

i = 1, 2, wheren1 andn2 are the number of nodes in the two coordinate directions. The
matrixD is included in the representation (3.9) only in the case of a circular artificial bound-
ary, and it corresponds to the nonreflecting boundary condition. The vectoren

i denotes the
usuali th canonical basis vector ofRn.

If we use the local first-order boundary condition (2.2) or the second-order condition
(2.3), the matrixD becomes a tridiagonal matrix and can be written as a linear combination,

D = c1M2+ c2A2, c1, c2 ∈ C. (3.10)

On the other hand, the exact condition (2.6) results in a dense block of the form

D = ωR

π
·

K∑
n=0

αnγnCn, (3.11)

with circulant matricesCn. Explicit forms of these matrices, as well as values for the
coefficientsαn andγn, can be found, for example, in [13].

Fast solution methods based on separation of variables for linear systems with separable
matrices are well known. Such fast solvers are available also in the case of the exact
nonreflecting boundary condition, because the Fourier matrix diagonalizes the dense matrix
D in (3.11) [13].
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4. COUPLING OF COORDINATE SYSTEMS

In this section, we consider the macro-hybrid formulation based on domain decom-
position for the boundary value problem (2.1). To our knowledge, the application of this
formulation to the numerical solution of the Helmholtz equation was first considered by
Goldstein in [15]. The hybrid formulation allows the introduction of independent discretiza-
tion meshes in different subdomains, and here we use it to couple polar and cartesian
coordinate systems [11].

The coupling is based on dividing the computational domain into two subdomains,G1

andG2, with a circular interface0 of radiusR0. Then, polar coordinates are employed in
the subdomainG1, while cartesian ones are used in the domainG2 (see Fig. 3). The choice
of the coordinate systems is motivated by the distribution of nodes in orthogonal grids
associated with the two coordinate systems: A polar grid is convenient for approximating
the asymptotic behaviour of the scattered wave, but it becomes unnecessarily dense near
the origin of coordinates, which increases the dimension of the linear system arising from
discretization. Therefore, a natural idea is to use cartesian grid within the domainG2, while
having an orthogonal polar grid in the outer domainG1. For simplicity, we impose the
first-order nonreflecting boundary condition (2.2) on0∞, but also the second-order and
exact conditions may be used in a similar manner.

We introduce three function spacesV , Y, and3 by

V ≡ H1(G1)× H1(G2), Y ≡ H1(G1)× V0
2 , 3 ≡ H−1/2(0), (4.1)

where the spaceV0
2 is given by

V0
2 ≡

{
v ∈ H1(G2) : v|∂Ä = 0

}
. (4.2)

The bilinear formsa1(·, ·) anda2(·, ·) on V × V are given bya1(u, v)≡af (u1, v1) and

a2(u, v) ≡
∫

G2

(∇u2 · ∇v̄2− ω2u2v̄2
)
, (4.3)

respectively. Then, the forma(·, ·) is introduced by summarizinga1 and a2,a(·, ·)≡
a1(·, ·)+ a2(·, ·).

FIG. 3. Partitioning of the domain into subdomains, and their discretization with nonmatching grids.
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We introduce a functiong2∈V2 such that trace|∂Äg2=−vI . Then, the macro-hybrid
formulation of Eq. (2.1) is: Find(u, λ)∈V ×3, u2− g2∈V0

2 , such that

a(u, v)+ b(λ, v) = 0 ∀v ∈ Y, (4.4a)

b(µ, u) = 0 ∀µ ∈ 3. (4.4b)

Here,b(µ, u) ≡ 〈µ, u1〉0 − 〈µ, u2〉0 and, hence, the second equation in (4.4) guarantees
the weak continuity ofu over0.

There are no constraints on the components ofV with respect to the interface0, which
allows us to use independent meshes inside the two subdomains. In the annulusG1, we
introduce a uniform orthogonal polar mesh, denoted byG1,h. To generate the mesh in the
domainG2, we first embed it into a rectanglê5 and construct an orthogonal triangular mesh
5̂h inside the rectangle. This mesh is then locally deformed according to the boundary of
the obstacle and to the circle0, which leads to the locally fitted meshG2,h (see Fig. 3).
Thus, we obtain piecewise linear approximationsσh and0h to the boundaries∂Ä and0,
respectively.

We introduce the standard piecewise bilinear finite element spaceV1,h corresponding to
the polar meshG1,h and the piecewise linear finite element spaceV2,h corresponding to
the locally fitted triangular meshG2,h. The vector spacesVh andYh corresponding to the
spacesV andY from (4.1) are then given by

Vh ≡ V1,h × V2,h, Yh ≡ V1,h × V0
2,h. (4.5)

The approximation space3h for the Lagrange multipliers is chosen to be the restriction of
the finite element spaceV1,h to the interface0:

3h ≡ trace|0V1,h ≡ {λh : ∃v1,h ∈ V1,h, λh = v1,h|0}. (4.6)

Because functionsv2,h ∈V2,h are not defined on the interface0, but on its piecewise linear
approximation,b(λ, v) is not defined forv∈Vh. Therefore, to obtain a properly defined finite
element problem, we need to modify the bilinear formb(·, ·). For this purpose, we introduce
a transformation operatorT , which maps a functionv : 0h→R, which is piecewise linear
with respect to the cartesian coordinates, into a functionTv : 0→R, which is piecewise
linear with respect to the polar coordinates, such that the nodal values remain unchanged;
that is,

v(x) = Tv(x) ∀x ∈ 0 ∩ 0h. (4.7)

Then, the finite element problem corresponding to the saddle-point problem (4.4) is: Find
(uh, λh)∈Vh×3h, u2,h= gh on ∂Äh, such that

a(uh, vh)+ b̂(λh, vh) = 0 ∀vh ∈ Yh, (4.8a)

b̂(µh, uh) = 0 ∀µh ∈ 3h, (4.8b)

where the functiongh ∈V2,h is the piecewise linear interpolation of the function−vI , while
the bilinear formb̂(·, ·) is given by

b̂(µh, uh) ≡
∫
0

(u1,h − T u2,h)µ̄h ds. (4.9)
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The finite element problem (4.8) leads to a saddle-point linear system of the form

Au ≡

A1 0 BT
1

0 A2 BT
2

B1 B2 0


u1

u2

uλ

 =
 0

f
0

 , BT
1 =

(
0

BT
10

)
, BT

2 =
(

BT
20

0

)
, (4.10)

where the blocksA1 andA2 correspond to the subdomainsG1 andG2, respectively. The
block A1 is separable, becauseG1,h is an orthogonal polar mesh. Thus, it is possible to
use separation of variables to eliminate all degrees of freedom associated with the nodes
outside the interface0:  S0 0 BT

10

0 A2 BT
2

B10 B2 0


u10

u2

uλ

 =
0

f
0

 , (4.11)

whereS0 is the Schur complement matrix ofA1. The multiplication with the blockS0 can
be performed efficiently using the FFT, because the polar mesh is uniform. Due to the choice
of the approximation space for Lagrange multipliers, matrix blockBT

10 is a symmetric and
positive definite tridiagonal matrix.

We precondition the reduced system (4.11) with the matrixB given by

B ≡

 0 0 BT
10

0 Ã2 BT
2

B10 B2 0

 . (4.12)

The subspace of constraints, denoted bySc, related to the problem (4.11) is defined to be
the set of vectors satisfying the last block row; that is,

Sc ≡
{

u = [u01 u2 uλ
]T

: B10u01 + B2u2 = 0
}
. (4.13)

It is easy to see that when we apply the preconditionerB to the system (4.11), the subspace
of constraints becomes invariant with respect to a preconditioned iterative method of the
form (3.4); that is, the conditionuk−1∈ Sc implies the conditionuk ∈ Sc.

The blockÃ2 is constructed using the fictitious domain approach (see Section 3.3). It is
based on an auxiliary boundary value problem of the form (3.8), which in this case is given
by

1u(x)+ ω2u(x) = 0, x ∈ 5̂, (4.14a)

∂u(x)
∂n
− iωu(x) = 0, x ∈ ∂5̂. (4.14b)

This problem is discretized using piecewise linear finite elements with mass lumping cor-
responding to the original triangulated mesh5̂h from which the locally fitted meshG2,h

was constructed. This procedure results in a separable matrixB.
To obtain a formal representation of the matrixÃ2, we write the matrixB in the following

block form, where the second block row corresponds to the degrees of freedoms inG2,h:

B ≡
(

Â1 Â12

Â21 Â2

)
. (4.15)
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The matrix blockÃ2 in the preconditionerB is now given by the Schur complement matrix

Ã2 = Â2− Â21Â
−1
1 Â12. (4.16)

Thus, solution to a linear system of the form̃A2u2= f2 can be obtained as a restriction of
the solution to the larger system

B
(

u1

u2

)
=
(

0
f2

)
. (4.17)

Due to the construction of the matricesA2 andB, almost all the rows of the matricesA2 and
Ã2 coincide. Therefore, the preconditioned iterative procedure for the system (4.11) can be
implemented in a low-dimensional subspace.

5. COMPUTATION OF THE RCS

The solution of Eq. (1.1) satisfies the asymptotic representation

u(x) = eiωr

√
r

F(x̂, ω)+O(r−3/2), (5.1)

wherex̂≡ x/r , and F is an analytic function of its variables called the far-field pattern
corresponding to the incident wave and to the scatterer. Using this function, we introduce
the radar cross sectionσ , which describes the asymptotic distribution of the intensity of the
scattered wave,

σ(x̂, ω) ≡ 2π |F(x̂, ω)|2. (5.2)

The radar cross section (RCS) is usually measured in decibel units:

RCS(x̂) = 10 log10
σ(x̂)
λ
, (5.3)

whereλ≡ 2π/ω denotes the wavelength.
First, we consider the case in which the artificial boundary0∞ is a circle. If the solution

is known along a circular boundary0, it is possible to derive an analytic representation for
the scattered wave in the domain exterior to this boundary. Using this representation we
obtain the asymptotic form for the solution,

u(r, θ)
r→∞−→ 1

π

√
2

πωr
eiωr

∞∑
n=0

′ ei(π/2)n

H (1)
n (ωR)

∫ 2π

0
cos(n(θ − θ ′))g(θ ′) dθ ′, (5.4)

whereg stands for the known numerical solution on the circle0. It is then straightforward
to see that

σ

λ
= 2

π3

∣∣∣∣∣
∞∑

n=0

′ ein(π/2)

H (1)
n (ωR)

In(θ)

∣∣∣∣∣
2

, (5.5)
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where

In(θ) =
∫ 2π

0
cos(n(θ − θ ′))g(θ ′) dθ ′. (5.6)

The convolution-type integralsIn can be computed efficiently using the FFT, while the
coefficients in the sum of (5.5) are obtained using the recursion formulas for the Hankel
functions. The series in (5.5) is terminated after the absolute value of the next term in the
series is below the machine precision.

We need to apply another approach, when the artificial boundary is a rectangle instead of a
circle. First, we recall that, in the two-dimensional case, the Green function for the Helmholtz
operator is given byG(r )≡ (i/4)H (1)

0 (r ). The solutionu of the discrete Helmholtz problem
in a rectangle can be expressed as a linear combination of the grid Green functionsgh

k ,
which are solutions to the discrete problem with the right-hand side equal to the canonical
basis vectoreN

k . There is a grid functionb such that the component ofu corresponding to
any grid node can be computed using the formula

(u)m =
N∑

k=1

(b)k
(
gh

k

)
m, m= 1, . . . , N. (5.7)

For the RCS computation, we need the asymptotic behaviour of the solution. Therefore,
we want to extend the discrete solutionu to R2. By replacing the grid Green functiongh

k

with the continuous Green function we obtain an approximate extensionũ. The asymptotic
behavior of the Hankel functions and the Taylor series for the distancer result in the
approximation for the RCS,

σ(θ) ≈ 1

4ω

∣∣∣∣∣∑
k

(b)ke−iωh(kx cosθ+ky sinθ)

∣∣∣∣∣
2

, (5.8)

wherekx andky are the row and column numbers of the nodek in the rectangular grid.
This formula can be used in our algorithm to compute the RCS, because the values(b)k are
known after the iterative solution.

6. TEST EXAMPLES

Each test example is described by the obstacleÄ, the wavenumberω, and the angleφ
between the positivex–axis and the incident vectorω. In the first test case, the obstacleÄ
was a disc with radiusr0= 0.375 centered at the point (0.5, 0) on thex–axis. The angle of
incidence and the wave number were given byφ= 0◦ andω= 8π , and, thus, the wavelength
λ was 1

4. In this case, the known analytic solution was used as a reference solution. The
circle was shifted, because otherwise a direct solver could have been used in the case with
a polar mesh.

In the second test series, the obstacleÄ was an ellipse the foci of which were the points
(±c, 0) on thex–axis. The boundary of an ellipse is given by the equation

x2

c2 cosh2ξ0
+ y2

c2 sinh2ξ0
= 1, (6.1)
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FIG. 4. The dimensions of the semi-open cavity.

where the parameterξ0 was chosen such that the aspect ratio of the ellipse was 14. The
angle of incidence wasφ= 30◦, while the wave number was given byω= 10π/c, where the
parameterc was chosen to be 0.6. Thus, there were approximately 10.03 wavelengths along
the major axis of the ellipse. In the case of an elliptical scatterer, the analytic solution can
be represented in terms of Mathieu functions (see [28]). We computed the analytic solution
by using the known representation, and thereby obtained a reliable reference solution for
our numerical experiments.

In the third test example, the scattererÄwas the semi-open cavity illustrated in Fig. 4 with
the parametersa= 4, b= 1, andt = 0.2. The wave number was chosen to beω= 4π leading
to the wavelengthλ= 1

2, and the angle of incidence wasφ= 0◦. Here, the analytic solution
is not known, and in order to obtain a reference solution we solved the problem in polar
coordinates using the exact nonreflecting boundary condition (2.6) and high discretization
accuracy.

The errors were computed by comparing the radar cross section (RCS) of the numer-
ical solution and the reference solution. The approximation error was measured with the
maximum norm(L∞−norm) given by

‖ f ∗ − f ‖∞ ≡ max
x∈[0,2π ]

| f ∗(x)− f (x)|, (6.2)

where f and f ∗ are the approximate and accurate RCSs, respectively.
We made additional tests with two high-frequency problems in which the scatterers were

the ellipse and the semi-open cavity introduced above. In the case with the ellipse, we
used the incident angleφ= 30◦ and the wave numberω= 50π , which corresponds to the
wavelengthλ= 1

25. Thus, there were approximately 30 wavelengths along the major axis.
With the semi-open cavity, the incident angle and the wave number wereφ= 30◦ and
ω= 10π , which leads to the wavelengthλ= 1

5.

7. NUMERICAL EXPERIMENTS

In this section, we present results of numerical experiments with the fictitious domain
methods considered in Section 3 and with the domain decomposition approach considered in
Section 4. One of the aims of our numerical experiments was to demonstrate that the approxi-
mate boundary value problem with a rectangular artificial boundary and the nonreflecting
boundary condition (2.4) does not provide sufficiently accurate approximation to the original
problem (1.1). There exists a lower bound for the error of approximation independent of
the size of the rectangle and accuracy of discretization. Another aim was to compare the
different solvers in terms of efficiency. We chose some accuracy levels and determined the
minimum distance between the obstacle and the artificial boundary and the maximum grid



          

FICTITIOUS DOMAIN METHODS FOR SCATTERING 103

step size required to reach this accuracy. Then, we compared the numbers of iterations and
the CPU time consumptions of the different methods.

As our iterative solution method, we applied the preconditioned GMRES method without
restarting, which was continued until the relative norm of the residualr k had decreased by
a given factorε, that is, when the criterion‖r k‖2≤ ε‖r0‖2 was satisfied. Throughout the
tests in this section, we used the value 10−6 for the factorε. The initial approximationu0

for the iterative method was always chosen to be the zero vector. This choice allowed us to
implement the iterative procedure in the subspace imÂ ∩ im(Â−B), because the right-hand
side vector̂f belongs to this space.

The following notations are used throughout this section. All the tests were performed
on an HP9000/J280 workstation (180 MHz PA8000 CPU, 256 MB RAM):

d the shortest distance between the scatterer and
the artificial boundary (in terms of the wavelength).

N dimension of the reduced linear system.
Nss dimension of the subspace imA ∩ im(A− B).
L number of nodes per wavelength.
D characteristic size of the scatterer.
ite total number of iterations
Tprec CPU time (in seconds) for solving one linear system

with the preconditioner.
Tite CPU time for the iterative solution.

The fictitious domain methods working with polar and cartesian locally fitted meshes are
referred to as thePolar- andCart -methods, respectively. The method coupling the two mesh
systems is referred to as theCoup-method. Each polar locally fitted mesh is constructed
from a uniform rectangular polar mesh5h with the grid step sizes1r and1θ in the
coordinate directionsr andθ , respectively. The grid step sizes are given by the relations
1r = λ/L and1θ =1r/R0, whereR0 is the minimal radius of a circle circumscribing the
scatterer.

In thePolar-method and theCoup-method, we have a uniform orthogonal polar mesh
outside some circle. As pointed out in Section 4, the matrix block corresponding to this
part of the mesh can be eliminated efficiently by using the separation of variables, which
motivates the use of a polar mesh outside a given circle. When the DtN condition (2.6) is
used in theCoup-method, the polar mesh is introduced only on the subdomain boundary
0 and the elimination procedure is not needed.

In the numerical tests, the accuracy of the different methods was studied by comput-
ing and comparing the radar cross sections of the numerical solutions. For this purpose,
we chose three different accuracy levels:ε1= 4× 10−1, ε2= 2× 10−1, andε3= 2× 10−2.
After selecting a particular accuracy level, we chose some relatively small artificial domain
5 and started to gradually increase the number of nodes per wavelength. If we use a local
nonreflecting boundary condition and fix the size of the boundary0∞, there is a lower bound
for the accuracy independent of the mesh step size. We refined the mesh until this accuracy
was obtained, and then enlarged the domain5 by a small amount. After the enlargement,
we again performed the mesh refinement to reach the maximum accuracy for that particular
5. This procedure was repeated until the error was reduced below the chosen accuracy
level. The same procedure was done with all the local nonreflecting boundary conditions
considered in Section 2.
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FIG. 5. The dependence of the lower bound for the error on the size of the artificial domain. On the left, for
a rectangular boundary and on the right, for a circular boundary.

The results of the experiments with the first test case are illustrated in Fig. 5. The two
figures depict the improvement in accuracy as the distance of the artificial boundary0∞
from the obstacle boundary is increased. Figure 5 shows that with theCart -method using
the first-order boundary condition (2.4) the error ceases to decrease as the distanced of the
artificial boundary from the obstacle is increased. This result confirms that there exists a
lower bound for the approximation error independent of the size of the artificial domain.
The figure on the right is obtained by using a circular boundary and the boundary conditions
(2.2) and (2.3). We see that the accuracy of the first-order boundary condition (2.2) improves
when the radius of the boundary0∞ is increased and the error is not bounded from below.
Furthermore, the experiment shows clearly the improvement in accuracy provided by the
second-order conditions (2.3) and (2.5).

In our tests with the exact boundary condition, we used the valueK = n2 to truncate the
infinite series in (2.6), that is,K equals the number of nodes in the angular direction in the
polar mesh. We fixed the radius of the artificial boundary at the valueR= 1.0 and gradually
increased the number of nodes per wavelength. A graph of the maximum error in the RCS
versus the number of nodes per wavelength is given in Fig. 6, which shows how the error
decreased and no lower bound emerged. The tightest accuracy levelε3 was easily obtained
and surpassed.

FIG. 6. The maximum error versus the discretization accuracy with the exact boundary condition (2.6).
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TABLE I

The Parameters for Four Different Methods Required to Reach

the Error Level ε3 with the First Test Obstacle

d L Nss N ite Tprec Tite

Polar, 2nd 1.3λ 75 2926 5.7e5 44 2.9 126
Coup, 2nd 1.7λ 80 10218 4.4e5 46 2.2 107
Polar, DtN 0.5λ 70 2737 4.3e5 41 2.3 95
Coup, DtN 0.5λ 75 9566 3.8e5 47 2.0 97

Using the first test example, we compared thePolar-method and theCoup-method with
different boundary conditions both in terms of memory consumption and CPU time usage.
We searched for the parametersRandL leading to an error below the levelε3. The results are
presented in Table I, and we can see that, in this particular example, the performance of the
two methods is practically the same. The memory consumption is significantly lower with
thePolar-method, because the obstacleÄ is shifted away from the origin of coordinates.
This makes the polar mesh around the obstacle sparser and reduces the dimension of the
arising subspace.

In the second test case (Fig. 7), we searched, with five different methods, for the minimum
size of the artificial boundary and minimum number of nodes per wavelength required to
reach the second error levelε2. The results are presented in Table II, and they indicate that the
Cart -method with the second-order nonreflecting boundary condition is the most efficient
one among the five methods. This is due to the small dimension of the subspace in which the
iterative solution is computed. Here, the coupling of polar and cartesian meshes provides
clear improvement to the case with purely polar meshes. The surface of the thin ellipse goes
near the origin of coordinates, and, therefore, the polar mesh around the scatterer becomes
very dense thereby increasing the dimension of the subspace in thePolar-method. Thus, the
ratio between the valuesNss in Coup-method and inPolar-method is reduced, compared
to the case with the circle, and the CPU time consumption of theCoup-method becomes
lower, compared to thePolar-method.

In the third test case (Fig. 8), the reference solution was computed with thePolar-method
using the exact boundary condition (2.6) and 120 nodes per wavelength. We searched for
the parametersd andL to reach the error levelε1 with respect to the maximum norm. The
results are presented in Table III, and again, theCart -method gives the best results. The
numerical results suggest that the reference solution obtained with thePolar-method is not

TABLE II

Results with the Thin Ellipse and Wavelength 3/25

d L Nss N ite Tprec Tite

Cart , 2nd 6.0λ 80 3280 1.8e6 63 2.9 197
Polar, 2nd 3.5λ 80 8014 1.0e6 69 5.0 368
Polar, DtN 0.2λ 80 8014 1.0e6 69 5.1 375
Coup, 2nd 3.5λ 80 14322 7.4e5 74 3.0 238
Coup, DtN 0.2λ 80 14322 7.4e5 74 2.8 221
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FIG. 7. The real part of the scattered field and the related RCS for the ellipse.

quite reliable, since the number of nodes per wavelength required by the error levelε1 is
smaller with thePolar-method than with the other methods.

We made experiments also with higher frequencies using the ellipse and the semi-open
cavity as the scatterers. In the case with the ellipse, we chose the wave numberω such
that there were 30 wavelengths between the foci of the ellipse. With the semi-open cavity,
the number of wavelengths along the obstacle was 20. The solutions were computed using
theCart -method with the second-order nonreflecting boundary condition and theCoup-
method with the exact boundary condition.

We fixed the discretization resolution to be 30 nodes per wavelength. The rectangular
artificial infinity in Cart -method was chosen by increasing the distanced between the ellipse
and the artificial boundary until the resulting error was of the same order of magnitude as
the error of theCoup-method with the exact boundary condition. The same distanced was
used in the test with the cavity.

Again,Cart -method with the second-order boundary condition surpassesCoup-method
with a clear marginal in computational performance, whereas the accuracy of the two
methods is approximately the same. The radar cross sections for the two test problems
are illustrated in Fig. 9. In the graph related to the semi-open cavity, there are two curves
corresponding to the two solvers. The solid curve corresponds to theCoup-method and the
dashed curve to theCart -method.

TABLE III

Results with the Semi-Open Cavity and Wavelength1
2

d L Nss N ite Tprec Tite

Cart , 2nd 4.5λ 70 5381 1.0e6 100 1.9 250
Polar, 2nd 2.5λ 60 9451 5.0e5 120 4.1 508
Polar, DtN 0.3λ 60 9451 5.0e5 119 3.9 495
Coup, 2nd 2.5λ 70 14202 4.8e5 138 3.1 438
Coup, DtN 0.3λ 70 14202 4.8e5 135 2.9 410
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TABLE IV

Results with the High-Frequency Problems

d L Nss N ite Tprec Tite

Ellipse
Cart , 2nd 7.0λ 30 3688 6.4e5 152 1.3 240
Coup, DtN 0.3λ 30 15988 8.8e5 159 4.0 695
Semi-open cavity
Cart , 2nd 7.0λ 30 5765 6.6e5 260 1.4 445
Coup, DtN 0.3λ 30 15190 5.2e5 264 2.1 745

8. CONCLUSIONS

The approximation accuracy of the first-order boundary condition (2.4) on a rectangular
boundary was demonstrated to be insufficient. This condition leads to spurious reflection
of waves as pointed out in many papers before (see, e.g., [17]). With the second-order
boundary condition (2.5), however, it is possible to reach high accuracy.

On a circular artificial boundary, the numerical results recommend the use of the exact
boundary condition (2.6). First, it leads to higher accuracy than the local conditions and
allows one to position the artificial boundary as close to the obstacle as possible. Second, the
computational cost of using the exact boundary condition in the fictitious domain method is
the same as with the local conditions. Although the matrix block associated with the nonlocal
boundary condition is dense, it has a circulant structure and can thus be diagonalized with
the standard Fourier matrix. Therefore, FFT-based fast solvers can be applied to the linear
systems with the corresponding separable preconditioner.

We were able to reach improvement in the computational performance by replacing a
polar locally fitted mesh with a coupled polar/cartesian mesh as was shown by the test case
with the ellipse. Furthermore, the coupling approach can be readily used in problems with
piecewise constant coefficients, and it provides an attractive alternative to treat exterior
problems with material inhomogenities in some neighbourhood of the obstacle.

FIG. 8. The real part of the scattered field for the semi-open cavity and the resulting RCS.
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FIG. 9. The radar cross sections of the ellipse (on the left) and the semi-open cavity (on the right) in the
high-frequency cases.

One drawback of the coupling procedure is that the mesh is fitted, in addition to the
obstacle surface, also to the interface0, which increases the dimension of the subspace in
which the iterative method operates. TheCoup-method is not flexible with respect to the
aspect ratio of the scatterer, since the interface0 needs to be a circle. This restriction is
especially important in the case when the scatterer is very thin (for example, a thin ellipse
or an airfoil).

According to our tests, theCart -method, together with the second-order boundary con-
dition (2.5) is the most efficient method among the ones considered here, although the
differences are not significant. In this method, the subspace for the iterative procedure is
associated only with the nodes in the neighbourhood of the scatterer and, therefore, its
dimension is considerably lower than in the case with the coupled mesh. Moreover, in the
Cart -method we have better possibilities to adapt the artificial boundary to the geometry
of the obstacle, which reduces the dimension of the total problem.

The numerical results suggest that the distance of the rectangular artificial boundary from
the scatterer has to be six to seven wavelengths in order to obtain as accurate solutions as
are obtained using the exact boundary condition on a circular boundary. Moreover, it is not
clear what the effect is on accuracy, if the geometry of the scatterer becomes more complex.

REFERENCES
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